메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국자료분석학회 Journal of The Korean Data Analysis Society Journal of The Korean Data Analysis Society 제10권 제5호
발행연도
2008.1
수록면
2,595 - 2,603 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
데이터마이닝은 방대한 양의 데이터 속에서 쉽게 드러나지 않는 유용한 정보를 찾아내는 기법으로서 각종 데이터를 기반으로 감춰진 지식, 기대하지 못했던 경향 또는 새로운 룰 등을 발견하는데 사용된다. 데이터마이닝 기법으로는 연관성규칙, 군집 분석, 의사결정나무기법, 신경망모형, 자기조직화지도 등의 분석 기법이 있다. 이들 중에서 연관성규칙은 데이터베이스 내에 존재하는 항목들 간의 상호 관련성을 찾아내는 기법으로서 항목들 사이의 지지도, 신뢰도, 향상도 등의 흥미도 측도를 기준으로 상호 관련성 여부를 측정한다. 본 논문에서는 향상도가 가지고 있는 방향성과 범위의 제한이 없는 단점을 보완하는 동시에 흥미도 측도가 가져야 할 조건들을 만족하는 새로운 흥미도 측도를 제안하고자 한다.

목차

등록된 정보가 없습니다.

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0