메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국ITS학회 한국ITS학회 논문지 한국ITS학회 논문지 제17권 제3호
발행연도
2018.1
수록면
98 - 110 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 논문은, 동적인 객체의 인식률 향상을 위해 고밀도 그리드 모델과 앵커 모델을 제안하였다. 두 가지 실험은 수행하여 제안하는 CNN 모델들을 제안하였다. 첫 번째 실험에 있어서, YOLO-v2모델을 KITTI 데이터 셋에 적용시켜 보았고, 고밀도 그리드 모델과 앵커 모델을 기존 YOLO-v2와 비교하였다. 실험에 있어서, 본 논문에서 제안하는 두 가지 모델은 기존의YOLO-v2모델에 비하여 ‘어려움’ 난이도의 자동차 검지에 있어서 6.26%에서 10.99%까지 우수한 성능을 나타낸 것을 확인하였다. 두 번째 실험에 있어서는 새로운 데이터 셋을 학습하였고, 두 가지 모델은 기존의 YOLO-v2모델보다 22.4%까지 ‘어려움’ 난이도의 자동차 인식률향상이 있음을 확인할 수 있었다.

목차

등록된 정보가 없습니다.

참고문헌 (8)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0