메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Purpose: To detect signals of adverse drug events after imipenem treatment using the Korea Institute of Drug Safety & Risk Management-Korea adverse event reporting system database (KIDS-KD). Materials and Methods: We performed data mining using KIDS-KD, which was constructed using spontaneously reported adverseevent (AE) reports between December 1988 and June 2014. We detected signals calculated the proportional reporting ratio, reporting odds ratio, and information component of imipenem. We defined a signal as any AE that satisfied all three indices. The signals were compared with drug labels of nine countries. Results: There were 807582 spontaneous AEs reports in the KIDS-KD. Among those, the number of antibiotics related AEs was 192510; 3382 reports were associated with imipenem. The most common imipenem-associated AE was the drug eruption; 353 times. We calculated the signal by comparing with all other antibiotics and drugs; 58 and 53 signals satisfied the three methods. We compared the drug labelling information of nine countries, including the USA, the UK, Japan, Italy, Switzerland, Germany, France, Canada, and South Korea, and discovered that the following signals were currently not included in drug labels: hypokalemia,cardiac arrest, cardiac failure, Parkinson’s syndrome, myocardial infarction, and prostate enlargement. Hypokalemia was an additional signal compared with all other antibiotics, and the other signals were not different compared with all other antibiotics and all other drugs. Conclusion: We detected new signals that were not listed on the drug labels of nine countries. However, further pharmacoepidemiologicresearch is needed to evaluate the causality of these signals.

목차

등록된 정보가 없습니다.

참고문헌 (24)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0