메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국엔터프라이즈아키텍처학회 정보기술아키텍처 연구 정보기술아키텍처 연구 제9권 제4호
발행연도
2012.1
수록면
413 - 422 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
웹 문서의 지속적인 증가로 인해 텍스트 기반, Page Rank 등의 방법으로 한 연구들이 증가하고 있다. 특히 웹 문서 내 URL 정보, HTML Tag 정보 등을 활용하는 연구들이 다시 주목을 받고 있다. 따라서 웹 문서 장르 분류를 위해 앞서 언급한 웹 문서 내 특징 요소들을 바탕으로 본 논문에서는 STW(Semantic Term Weight)를 적용하여 웹 문서 장르 분류하는 연구를 기술한다. 웹 문서 장르분류에 사용되는 데이터 셋은 학습 문서와 테스트 문서로 구성되고, SVM 알고리즘을 사용하여 웹 문서 분류 실험을 수행한다. 학습 과정을 위해 20-Genre-collection corpus 내 1,000여개의 문서를 선정하여 SVM 알고리즘을 통해 학습하였고, 테스트 과정에서 사용된 데이터 셋은 KI-04 corpus를 사용하였다. 테스트 과정 후 STW를 사용한 실험과 STW를 사용하지 않은 실험으로 분류하여 정확도를 측정하였다. 또한 이를 바탕으로 1,212개의 테스트 문서를 분류하였다. 그 결과 STW를 사용한 실험이 그렇지 않은 실험 보다 약 10.2% 높은 정확도를 보였다.

목차

등록된 정보가 없습니다.

참고문헌 (15)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0