메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국기계기술학회 한국기계기술학회지 한국기계기술학회지 제14권 제6호
발행연도
2012.1
수록면
63 - 66 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This paper presents a new feature representation method, named two-dimensional orthogonalized Fisher discriminant analysis(2D-OFD). The method adopts the 2D-LDA and orthogonalization of Fisher vector. It produces the small size scatter matrix than 1D method. Therefore it can evaluate the scatter matrix accurately. In addition, it is not suffered from small sample size problem. The orthogonalization eliminates the linear dependences among Fisher's discriminant vectors. As a result, it promotes the discriminant capability of the 2D-LDA. The proposed method is tested on the ORL face image database. We test our method 10 times. For each experiment, five training images are randomly chosen each person and the other five images are used for testing. The test show that the average recognition rate is 96.2%. When the image is downsampled to 28x23matrix to reduce the computational complexity, the average recognition rate is 95.9%.

목차

등록된 정보가 없습니다.

참고문헌 (7)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0