메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국산업경영시스템학회 산업경영시스템학회지 산업경영시스템학회지 제38권 제3호
발행연도
2015.1
수록면
169 - 180 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Recently, scheduling problems with position-dependent processing times have received considerable attention in the literature, where the processing times of jobs are dependent on the processing sequences. However, they did not consider cases in which each processed job has different learning or aging ratios. This means that the actual processing time for a job can be determined not only by the processing sequence, but also by the learning/aging ratio, which can reflect the degree of processing difficulties in subsequent jobs. Motivated by these remarks, in this paper, we consider a two-agent single-machine scheduling problem with linear job-dependent position-based learning effects, where two agents compete to use a common single machine and each job has a different learning ratio. Specifically, we take into account two different objective functions for two agents: one agent minimizes the total weighted completion time, and the other restricts the makespan to less than an upper bound. After formally defining the problem by developing a mixed integer non-linear programming formulation, we devise a branch-and-bound (B&B) algorithm to give optimal solutions by developing four dominance properties based on a pairwise interchange comparison and four properties regarding the feasibility of a considered sequence. We suggest a lower bound to speed up the search procedure in the B&B algorithm by fathoming any non-prominent nodes. As this problem is at least NP-hard, we suggest efficient genetic algorithms using different methods to generate the initial population and two crossover operations. Computational results show that the proposed algorithms are efficient to obtain near-optimal solutions.

목차

등록된 정보가 없습니다.

참고문헌 (26)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0