메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국산업경영시스템학회 산업경영시스템학회지 산업경영시스템학회지 제39권 제3호
발행연도
2016.1
수록면
30 - 38 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Shuttle-Based Storage/Retrieval System (SBS/RS) is relatively new to industry. The system is in the category of Automated Storage/Retrieval System (AS/RS), but it is different in that the SBS/RS uses shuttles as Storage/Retrieval (SR) machine instead using a stacker crane. The shuttles are assigned to each tier on multi-tier system and operated for pick-up or drop-off order. Since the system can handle multiple orders simultaneously, it can provide much higher throughput than that of general AS/RS with single stocker crane. Thus, this new system is well fit to recent tendency of increasing small quantity batch production and orders. One of the drawback of this system is that it needs a lot of investment to set up. The efficient operation of the system would be one of the critical matters to increase economic efficiency of capital investment. In this study, we focused on the dwell point policy for shuttles to find efficient way of operating the system. There are four basic policies for the dwell point and we had simulation-based experiment for two different scenarios based on the speed of the shuttle and inter-arrival time of the loads coming to the system combined with four different policies. As it was mentioned above, this SBS/RS relatively new to the field and there is no such experiment shown on previous research and the study of dwell point policy for this SBS/RS could provide the direct comparison of each policy with different hardware specification; the capability of the system. The policy that achieves most efficient operation among the given environment is proposed and the usability of the system is discussed.

목차

등록된 정보가 없습니다.

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0