메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국산업경영시스템학회 산업경영시스템학회지 산업경영시스템학회지 제40권 제3호
발행연도
2017.1
수록면
116 - 122 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Advances in information technology, communication and network technology are radically facilitating digital convergences as the integration of human, equipment, and space in the current industry 4.0 era. In industry 4.0 environment, the vast amount of information with networked computing technology can be simultaneously accessible even in limited physical space. Two main benefit points out of these information are the convenience and efficiency in their online transactions either buying things online or selling online. Even though there exist so many benefits that information technology can create for the people doing business over the internet there is a critical problem to be answered. In spite of many such advantages, however, online transactions have many dysfunctions such as personal information leakage, account hacking, and cybercrime. Without preparing the appropriate protection methods or schema people reluctantly use the transaction or would find some other partners with enhanced information security environment. In this paper we suggested a novel selection criteria that can be used to evaluate the reliable means of authentication against the expected risks under on-going IoT based environment. Our selection criteria consists of 4 steps. The first step is services and risk identification step. The second step is evaluation of risk occurrence step. The third step includes the evaluation of the extent of damage. And the final step is the assessment of the level of risk. With the help of the above 4 step-approach people can systematically identify potential risks hiding in the online transactions and effectively avoid by taking appropriate counter actions

목차

등록된 정보가 없습니다.

참고문헌 (6)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0