메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국원자력학회 Nuclear Engineering and Technology Nuclear Engineering and Technology 제49권 제2호
발행연도
2017.1
수록면
360 - 372 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Many advanced reactor designs rely on passive systems to fulfill safety functions duringaccident sequences. These systems depend heavily on boundary conditions to induce amotive force, meaning the system can fail to operate as intended because of deviations inboundary conditions, rather than as the result of physical failures. Furthermore, passivesystems may operate in intermediate or degraded modes. These factors make passivesystem operation difficult to characterize within a traditional probabilistic framework thatonly recognizes discrete operating modes and does not allow for the explicit considerationof time-dependent boundary conditions. Argonne National Laboratory has been examiningvarious methodologies for assessing passive system reliability within a probabilistic riskassessment for a station blackout event at an advanced small modular reactor. This paperprovides an overview of a passive system reliability demonstration analysis for an externalevent. Considering an earthquake with the possibility of site flooding, the analysis focuseson the behavior of the passive Reactor Cavity Cooling System following potential physicaldamage and system flooding. The assessment approach seeks to combine mechanistic andsimulation-based methods to leverage the benefits of the simulation-based approachwithout the need to substantially deviate from conventional probabilistic risk assessmenttechniques. Although this study is presented as only an example analysis, the resultsappear to demonstrate a high level of reliability of the Reactor Cavity Cooling System (andthe reactor system in general) for the postulated transient event.

목차

등록된 정보가 없습니다.

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0