메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Huy Toan Nguyen (Chonnam National University) Gwang Hyun Yu (Chonnam National University) Seung You Na (Chonnam National University) Jin Young Kim (Chonnam National University) Kyung Sik Seo (Chonnam National University)
저널정보
한국정보기술학회 한국정보기술학회논문지 한국정보기술학회논문지 제17권 제9호(JKIIT, Vol.17, No.9)
발행연도
2019.9
수록면
99 - 112 (14page)
DOI
10.14801/jkiit.2019.17.9.99

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
도로 포장면의 크랙(crack)은 도로포장 구조의 열화를 입증하는 중요한 신호와 증상이다. 카메라 영상기반 도로포장 크랙 탐지는 강도 비균질성, 위상 복잡성, 낮은 대조도 및 노이즈성의 텍스처 배경 때문에 어려운 문제이다. 본 논문은 흑백영상에 대하여 깊은 신경망(DNN)에 기반하여 픽셀수준의 도로 크랙 탐지 및 분할 문제에 대해 다룬다. 변형된 U-net 네트워크와 고수준 특징 네트워크를 포함하는 새로운 DNN 구조를 제안한다. 본 연구의 중요 기여는 융합 층을 통해 공급되는 이들 네트워크의 결합 방법이다. 우리가 아는 한, 본 연구는 보도블럭 크랙 분할 및 탐지 문제를 결합을 소개한 최초의 논문이다. 크랙 탐지 및 분할의 시스템 성능은 새로운 구조를 사용하여 급격히 향상되었다. 제안된 시스템을 2개의 공개 데이터셋크랙 포레스트 데이터셋(CFD)와 AigleRN 데이터셋에 대하여 구현하고 평가하였다. 본 논문의 시스템은 여덟 가지의 최신 알고리즘과 같은 데이터셋으로 실험을 하였을 때, 가장 뛰어난 결과를 보여주었다.

목차

Abstract
요약
Ⅰ. Introduction
Ⅱ. Related works
Ⅲ. Methodology
Ⅳ. Experiments
Ⅴ. Conclusions
References

참고문헌 (38)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0