메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
배규호 (인하대학교) 안드레 이반 (인하대학교) 박인규 (인하대학교)
저널정보
한국방송·미디어공학회 방송공학회논문지 방송공학회논문지 제24권 제5호
발행연도
2019.9
수록면
755 - 764 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
현재 사용 가능한 상용 라이트필드 카메라는 정지 영상만을 취득하거나 가격이 매우 높은 단점으로 인하여 5차원 라이트필드 비디오 취득에 어려움이 있다. 이러한 문제점을 해결하기 위해 본 논문에서는 단안 비디오로부터 라이트필드 비디오를 합성하기 위한 딥러닝 기반 기법을 제안한다. 라이트필드 비디오 학습 데이터를 취득하기 어려운 문제를 해결하기 위하여 UnrealCV를 활용하여 3차원 그래픽 장면의 사실적 렌더링에 의한 합성 라이트필드 데이터를 취득하고 이를 학습에 사용한다. 제안하는 딥러닝 프레임워크는 입력 단안 비디오에서 9×9의 각 SAI(sub-aperture image)를 갖는 라이트필드 비디오를 합성한다. 제안하는 네트워크는 밝기 영상으로 변환된 입력 영상으로부터 appearance flow를 추정하는 네트워크, appearance flow로부터 얻어진 인접한 라이트필드 비디오 프레임간의 optical flow를 추정하는 네트워크로 구성되어 있다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 제안하는 기법
Ⅲ. 실험 결과
Ⅳ. 결론
참고문헌 (References)

참고문헌 (21)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-567-001242652