메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Kexin Wu (Andong National University) Heuy Dong Kim (Andong National University)
저널정보
한국추진공학회 한국추진공학회 학술대회논문집 한국추진공학회 2019년도 제52회 춘계학술대회 논문집
발행연도
2019.5
수록면
326 - 338 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (9)

초록· 키워드

오류제보하기
Recently, fluidic thrust vector control is gradually replacing mechanical thrust vector control to redirect numerous aerospace vehicles due to lots of benefits, such as better control effect, no moving mechanical equipment, and fast dynamic response. In present works, computational assessments of gas dynamic characteristics have been explored in a three-dimensional counter-flow thrust vector control system, which is based on a rectangular supersonic nozzle. The supersonic nozzle is created by Method of Characteristics and the design Mach number is specially set as 2.5. To confirm the reliability and accuracy of present methodology, numerical simulations are validated against experimental test referred to open literature. Static pressure along the upper suction collar is found to be fairly comparable with experimental data, which is calculated by utilizing standard k-ε turbulence model. Performance variations are illustrated by varying the gap height of secondary flow duct. Key parameters have been quantitatively illustrated, such as static pressure distributions along the upper suction collar, deflection angle, secondary mass flow ratio, and resultant thrust coefficient. In addition, streamlines in the symmetry plane, turbulent kinetic energy, and three-dimensional flow-field with iso-Mach number surface are qualitatively presented to reveal flow-field natures. Some constructive conclusions are provided for further studies in counter-flow thrust vector control field.

목차

ABSTRACT
1. Introduction
2. Numerical analysis
3. Results and discussions
4. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0