메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국스마트미디어학회 스마트미디어저널 스마트미디어저널 제8권 제3호
발행연도
2019.1
수록면
31 - 40 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
To understand how a Convolutional Neural Network (CNN) model captures the features of a pattern to determine which class it belongs to, in this paper, we use Gradient-weighted Class Activation Mapping (Grad-CAM) to visualize and analyze how well a CNN model behave on the CNU weeds dataset. We apply this technique to Resnet model and figure out which features this model captures to determine a specific class, what makes the model get a correct/wrong classification, and how those wrong label images can cause a negative effect to a CNN model during the training process. In the experiment, Grad-CAM highlights the important regions of weeds, depending on the patterns learned by Resnet, such as the lobe and limb on 미국가막사리, or the entire leaf surface on 단풍잎돼지풀. Besides, Grad-CAM points out a CNN model can localize the object even though it is trained only for the classification problem.

목차

등록된 정보가 없습니다.

참고문헌 (9)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0