메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
중소기업융합학회 융합정보논문지 융합정보논문지 제9권 제9호
발행연도
2019.1
수록면
1 - 12 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
A dialog system becomes a new way of communication between human and computer. The dialog system takes human voice as an input, and gives a proper response in voice or perform an action. Although there are several well-known products of dialog system (e.g., Amazon Echo, Naver Wave), they commonly suffer from a problem of out-of-domain utterances. If it poorly detects out-of-domain utterances, then it will significantly harm the user satisfactory. There have been some studies aimed at solving this problem, but it is still necessary to study about this intensively. In this paper, we give an overview of the previous studies of out-of-domain detection in terms of three point of view: dataset, feature, and method. As there were relatively smaller studies of this topic due to the lack of datasets, we believe that the most important next research step is to construct and share a large dataset for dialog system, and thereafter try state-of-the-art techniques upon the dataset.

목차

등록된 정보가 없습니다.

참고문헌 (35)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0