메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The prediction of the sum of container is very important in the field of container transport. Many influencingfactors can affect the prediction results. These factors are usually composed of many variables, whosecomposition is often very complex. In this paper, we use gray relational analysis to set up a proper forecastindex system for the prediction of the sum of containers in foreign trade. To address the issue of the lowaccuracy of the traditional prediction models and the problem of the difficulty of fully considering all the factorsand other issues, this paper puts forward a prediction model which is combined with a back-propagation (BP)neural networks and the support vector machine (SVM). First, it gives the prediction with the data normalizedby the BP neural network and generates a preliminary forecast data. Second, it employs SVM for the residualcorrection calculation for the results based on the preliminary data. The results of practical examples show thatthe overall relative error of the combined prediction model is no more than 1.5%, which is less than the relativeerror of the single prediction models. It is hoped that the research can provide a useful reference for theprediction of the sum of container and related studies.

목차

등록된 정보가 없습니다.

참고문헌 (25)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0