메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한수학회 대한수학회보 대한수학회보 제56권 제3호
발행연도
2019.1
수록면
729 - 743 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In this paper, we introduce strongly quasi primary ideals which is an intermediate class of primary ideals and quasi primary ideals. Let $R$ be a commutative ring with nonzero identity and $Q$ a proper ideal of $R$. Then $Q$ is called strongly quasi primary if $ab\in Q$ for $a,b\in R$ implies either $a^{2}\in Q$ or $b^{n}\in Q~ (a^{n}\in Q$ or $b^{2}\in Q)$ for some $n\in \mathbb{N} $. We give many properties of strongly quasi primary ideals and investigate the relations between strongly quasi primary ideals and other classical ideals such as primary, 2-prime and quasi primary ideals. Among other results, we give a characterization of divided rings in terms of strongly quasi primary ideals. Also, we construct a subgraph of ideal based zero divisor graph $\Gamma_{I}(R)$ and denote it by $\Gamma_{I}^{\ast}(R)$, where $I$ is an ideal of $R$. We investigate the relations between $\Gamma_{I}^{\ast} (R)$ and $\Gamma_{I}(R)$. Further, we use strongly quasi primary ideals and $\Gamma_{I}^{\ast}(R)$ to characterize von Neumann regular rings.

목차

등록된 정보가 없습니다.

참고문헌 (19)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0