메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국ITS학회 한국ITS학회 논문지 한국ITS학회 논문지 제18권 제2호
발행연도
2019.1
수록면
29 - 43 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The calibration of microscopic traffic simulation models has received much attention in the simulation field. Although no standard has been established for it, a genetic algorithm (GA) has been widely employed in recent literature because of its high efficiency to find solutions in such optimization problems. However, the performance still falls short in simulation analyses to support fast decision making. This paper proposes a new calibration procedure using a dual GA and central composite design (CCD) in order to improve the efficiency. The calibration exercise goes through three major sequential steps: (1) experimental design using CCD for a quadratic response surface model (RSM) estimation, (2) 1st GA procedure using the RSM with CCD to find a near-optimal initial population for a next step, and (3) 2nd GA procedure to find a final solution. The proposed method was applied in calibrating the Gipps car-following model with respect to maximizing the likelihood of a spacing distribution between a lead and following vehicle. In order to evaluate the performance of the proposed method, a conventional calibration approach using a single GA was compared under both simulated and real vehicle trajectory data. It was found that the proposed approach enhances the optimization speed by starting to search from an initial population that is closer to the optimum than that of the other approach. This result implies the proposed approach has benefits for a large-scale traffic network simulation analysis. This method can be extended to other optimization tasks using GA in transportation studies.

목차

등록된 정보가 없습니다.

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0