메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Kazuki NAKAMICHI (Kyushu Institute of Technology) Huimin LU (Kyushu Institute of Technology) Hyoungseop KIM (Kyushu Institute of Technology) Kazue YONEDA (University of Occupational and Environmental Health) Fumihiro TANAKA (University of Occupational and Environmental Health)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2019
발행연도
2019.10
수록면
1,042 - 1,045 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Circulating Tumor Cells (CTC) is expected as a useful biomarker test that can evaluate cancer metastasis. CTC exists in the blood of cancer patients and is considered to be an incentive of cancer metastasis. Pathologists analyze the blood to find these metastasis cancers from three colors of fluorescence microscopy images, but the manual analysis is time-consuming. In this paper, we develop an automatic CTC classification method in fluorescence microscopy images to reduce the burden of pathologists. In the proposed method, we detect cell regions by the bacterial foraging-based edge detection (BFED) algorithm and classify CTC by SqueezeNet, which is the kind of convolutional neural network (CNN). We apply the proposed method to 5040 microscopy images (6 samples) and evaluate the effectiveness. The experimental results demonstrate that the proposed method has a true positive rate is 89.86% and a false positive rate is 3.27%.

목차

Abstract
1. INTRODUCTION
2. METHODS
3. EXPERIMENTAL RESULTS
4. DISCUSSION
5. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0