메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
A-Ram Seong (AOSYSTEM) Daegeun Ha (CONWELL) Moon-Ki Cho (CONWELL)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2019
발행연도
2019.10
수록면
1,264 - 1,267 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Efficient operation of the polyethylene (PE) process is greatly dependent on the correct prediction or estimation of the properties including melt index, density and production rate. However, direct measurement of resin property has limitation due to cost of measuring equipment and long measurement period. Although product drops are made every few minutes to remove resin from a reactor, they vary in size and do not occur at a precisely known frequency. These problems make the difficulty of the real-time control of the product quality and lead to yield off-spec products, resulting in economic losses. For this reason, resin property in polyethylene process must be inferred or calculated from other process variables that are directly measured. The combination of online and offline measurement equipment information based on the process model not only improves the measurement performance of the quality variable but also contributes to the control performance of the product property.
In this study, we developed some calculation methods based on material and energy balance around the reactor can be used to estimate the resin property in a PE process.

목차

Abstract
1. INTRODUCTION
2. MODEL BUILD OF RESIN PROPERTY PREDCTION
3. CALCULATION OF REGIN PROPERTIES
4. RESULT OF THE RESIN PROPERTIES PREDICTION
5. CONCLUSION AND APPLICATION
Reference

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0