메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Tianqi Wang (Korea Advanced Institute of Science and Technology) Dong Eui Chang (Korea Advanced Institute of Science and Technology)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2019
발행연도
2019.10
수록면
1,306 - 1,310 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
We present a training pipeline for the autonomous driving task given the current camera image and vehicle speed as the input to produce the throttle, brake, and steering control output. The simulator Airsim’s [1] convenient weather and lighting API provides a sufficient diversity during training which can be very helpful to increase the trained policy’s robustness. In order to not limit the possible policy’s performance, we use a continuous and deterministic control policy setting. We utilize ResNet-34 [2] as our actor and critic networks with some slight changes in the fully connected layers. Considering human’s mastery of this task and the high-complexity nature of this task, we first use imitation learning to mimic the given human policy and then leverage the trained policy and its weights to the reinforcement learning phase for which we use DDPG [3]. This combination shows a considerable performance boost comparing to both pure imitation learning and pure DDPG for the autonomous driving task.

목차

Abstract
1. INTRODUCTION
2. RELATED WORK
3. PROPOSED METHOD
4. EXPERIMENTS
5. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0