메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
권현아 (한국생산기술연구원) 박광서 (한국생산기술연구원) 손승환 (한국생산기술연구원) 최은경 (한국생산기술연구원) 김상헌 (경성대학교)
저널정보
한국분석과학회 분석과학 분석과학 제32권 제6호
발행연도
2019.12
수록면
233 - 242 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Substance identification is the first step of the REACH registration. It is essential in terms of Classification, Labelling and Packaging (CLP) regulation and because even trace amounts of impurities or additives can affect the classification. In this study, a scheme for the screening, quantification, and interpretation of trace amounts of hazardous inorganic substances is proposed to detect the presence of more than 0.1% hazardous inorganic substances that have been affecting the hazard classification. An exemplary list of hazardous inorganic substances was created from the substances of very high concern (SVHCs) in REACH. Among 201 SVHCs, there were 67 inorganic SVHCs containing at least one or ~2-3 heavy metals, such as As, Cd, Co, Cr, Pb, Sb, and Sn, in their molecular formula. The inorganic SVHCs are listed in excel format with a search function for these heavy metals so that the hazardous inorganic substances, including each heavy metal and the calculated ratio of its atomic weight to molecular weight of the hazardous inorganic substance containing it, can be searched. The case study was conducted to confirm the validity of the established scheme with zinc oxide (ZnO). In a substance that is made of ZnO, Pb was screened by XRF analysis and measured to be 0.04% (w/w) by ICP-OES analysis. After referring to the list, the presence of Pb was interpreted just as an impurity, but not as an impurity relevant for the classification. Future studies are needed to expand on this exemplary list of hazardous inorganic substances using proper regulatory data sources.

목차

Abstract
1. 서론
2. 연구 방법
3. 결과 및 고찰
4. 결론
References

참고문헌 (21)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-433-000094736