메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김영현 (부산대학교) 김응섭 (부산대학교) 최명주 (부산대학교) 심교문 (농촌진흥청) 안중배 (부산대학교)
저널정보
한국기상학회 대기 대기 Vol.29 No.5
발행연도
2019.12
수록면
671 - 687 (17page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This study evaluates the long-term seasonal predictability of summer (June, July and August) heatwaves over South Korea using 30-year (1989~2018) Hindcast data of the Pusan National University Coupled General Circulation Model (PNU CGCM)-Weather Research and Forecasting (WRF) chain. Heatwave indices such as Number of Heatwave days (HWD), Heatwave Intensity (HWI) and Heatwave Warning (HWW) are used to explore the long-term seasonal predictability of heatwaves. The prediction skills for HWD, HWI, and HWW are evaluated in terms of the Temporal Correlation Coefficient (TCC), Root Mean Square Error (RMSE) and Skill Scores such as Heidke Skill Score (HSS) and Hit Rate (HR). The spatial distributions of daily maximum temperature simulated by WRF are similar overall to those simulated by NCEP-R2 and PNU CGCM. The WRF tends to underestimate the daily maximum temperature than observation because the lateral boundary condition of WRF is PNU CGCM. According to TCC, RMSE and Skill Score, the predictability of daily maximum temperature is higher in the predictions that start from the February and April initial condition. However, the PNU CGCM-WRF chain tends to overestimate HWD, HWI and HWW compared to observations. The TCCs for heatwave indices range from 0.02 to 0.31. The RMSE, HR and HSS values are in the range of 7.73 to 8.73, 0.01 to 0.09 and 0.34 to 0.39, respectively. In general, the prediction skill of the PNU CGCM-WRF chain for heatwave indices is highest in the predictions that start from the February and April initial condition and is lower in the predictions that start from January and March. According to TCC, RMSE and Skill Score, the predictability is more influenced by lead time than by the effects of topography and/or terrain feature because both HSS and HR varies in different leads over the whole region of South Korea.

목차

Abstract
1. 서론
2. 자료 및 방법
3. 예측성 평가
4. 요약 및 결론
REFERENCES

참고문헌 (41)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0