메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
정민영 (연세대학교) 이현수 (연세대학교)
저널정보
한국실내디자인학회 한국실내디자인학회 논문집 한국실내디자인학회 논문집 제28권 제6호(통권 제137호)
발행연도
2019.12
수록면
75 - 85 (11page)
DOI
10.14774/JKIID.2019.28.6.075

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This research suggests to classify Emotional adjective for the hospital indoor image. The aim of this study was twofold. First it is an attempt to overcome limitation of overfitting data with pre-process and Second it is an approach for prediction quantified the image data with Emotional adjective. The emotion is important because emotion interact between indoor and human. The hospital indoor image also have specialized emotional effect. Emotional adjective is necessary to verify throughout variety of source qualitative and quantitative research. recently it is getting more harder with I.R.B.(Institutional Review Board) than Emotional adjective data had made. This research is based on deep learning method for emotional adjective quantifiaction that can replace thousands of people’s cognition. In the proposed simulation, emotional colors are firstly processed in the frequency domain to indoor images which can be treated as an emotional image. For pre-processing Emotional colors are extracted from hospital image. and search the emotional adjetive to get indoor images to fed in CNN(Convolutional Neural Network). For the hospital indoor image clustered, emotional indoor image are fed in CNN. The output of the CNNs are fused using TF(TensorFlow) API. The input of the fusion is given to a support of Python language for image classification. The proposed system is evaluated using Tensor board - which is the proved data. This research has concluded that it is desirable to use TF for predicting the set of emotional adjective and it helps for emotion analysis efficiently. TF works for the emotional image classifying the hospital indoor images. The hospital image is classified using deep learning, and analysis of emotion as A is 80 percentage modern and B is 20 percent natural in a second for a thousand emotional colors. It is expected to use these results of research have for implications of emotional analysis that represent functions of the indoor images.

목차

Abstract
1. 서론
2. 연구 범위 및 방법
3. 이론적 고찰
4. 병원 실내이미지의 감성어휘 선별
5. 딥러닝에 기반한 감성어휘 분류
6. 결론
참고문헌

참고문헌 (39)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-619-000264218