메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Md. Tariqulhasan Fazle Rabbi (University of Asia Pacific) S. M. Tanjilur Rahman (University of Asia Pacific) Prokash Biswash (University of Asia Pacific) Jinsul Kim (Chonnam National University) Alamin Sheikh (Taylor’s University) Aloke Kumar Saha (University of Asia Pacific) Mohammad Shorif Uddin (Jahangirnagar University)
저널정보
한국디지털콘텐츠학회 The Journal of Contents Computing JCC Vol.1 No.1
발행연도
2019.12
수록면
25 - 37 (13page)
DOI
10.9728/jcc.2019.12.1.1.25

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
A signature is a mark or sign which is made by an individual on an instrument or document to signify knowledge, approval, acceptance or obligation. To authenticate writing or a notice of its source and to bind the individual signing which is written by the provisions contained in the document. Signature verification is more important for not only in commercial banks but also with every sector like falsification of documents in numerous financial, legal and other commercial aspects. A signature is an important factor in biometric technique in which it is used to detect forged or genuine signature. This paper concerns offline handwritten signature verification using convolutional neural network (CNN). Here we have used data augmentation with CNN model and also, we have made a comparative study with Multilayer Perceptron (MLP) and Single Layer Perceptron (SLP). The model is tested using 4480 images with 20 subjects where we have found the accuracy of CNN is 82.75% and CNN with data augmentation is 98.33%, SLP is 39.91% and MLP is 63.57%. Based on the comparative study CNN with data augmentation proves the best performance.

목차

Abstract
1. Introduction
2. Background
3. Dataset
4. Used Method
5. Result Analysis
6. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0