메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김선진 (충북대학교) 이종근 (충북대학교) 곽내정 (충북대학교) 류성필 (충북대학교) 안재형 (충북대학교)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제24권 제2호
발행연도
2020.2
수록면
204 - 211 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 약한 지도학습을 통한 주 객체 위치 검출을 위한 최적의 딥러닝 네트워크 구조를 제안한다. 제안된 네트워크는 약한 지도학습을 통한 주 객체의 위치 검출 정확도를 향상시키기 위해 컨벌루션 블록을 추가하였다. 추가적인 딥러닝 네트워크는 VGG-16을 기반으로 합성곱 층을 더해주는 5가지 추가적인 블록으로 구성되며 객체의 실제 위치 정보가 필요하지 않는 약한 지도 학습의 방법으로 학습하였다. 또한 객체의 위치 검출에는 약한 지도학습의 방법 중, CAM에서 GAP이 필요하다는 단점을 보완한 Grad-CAM을 사용하였다. 제안한 네트워크는 CUB-200-2011 데이터 셋을 이용하여 성능을 테스트하였으며 Top-1 Localization Error를 산출하였을 때 50.13%의 결과를 얻을 수 있었다. 또한 제안한 네트워크는 기존의 방법보다 주 객체를 검출하는데 더 높은 정확도를 보인다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. 주 객체 검출을 위한 Grad-CAM 기반의 딥러닝 네트워크
Ⅳ. 실험 및 결과 분석
Ⅴ. 결론
References

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-004-000454024