메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Yi-cheng Wu (Xiamen University of Technology) Hong-jie Wu (Xiamen University of Technology) Hai-yan Fu (Xiamen University of Technology) Zhineng Dai (Xiamen University of Technology) Ze-jie Wang (Qilu University of Technology)
저널정보
대한환경공학회 Environmental Engineering Research Environmental Engineering Research 제25권 제6호
발행연도
2020.12
수록면
871 - 877 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Sediment microbial fuel cells (SMFCs) are attractive devices to in situ power environmental monitoring sensors and bioremediate contaminated soils/sediments. Burial depth of the anode was verified to affect the performance of SMFCs. The present research evaluated the differences in microbial community structure of anodic biofilms located at different depth. It was demonstrated that both microbial diversity and community structure of anodic biofilms were influenced by the depth of anode location. Microbial diversity decreased with increased anodic depth. The number of the operational taxonomic units (OTUs) was determined as 1438 at the anode depth of 5 cm, which reduced to 1275 and 1005 at 10 cm and 15 cm, respectively. Cluster analysis revealed that microbial communities of 5 cm and 10 cm were clustered together, separated from the original sediment and 15 cm. Proteobacteria was the predominant phylum in all samples, followed by Bacteroidetes and Firmicutes. Beta- and Gamma-proteobacteria were the most abundant classes. A total of 23 OTUs showed high identity to 16S rRNA gene of exoelectrogens such as Geobacter and Pseudomonas. The present results provided insights into the effects of anode depth on the performance of SMFC from the perspectives of microbial community structure.

목차

ABSTRACT
1. Introduction
2. Material and Methods
3. Results and Discussion
4. Conclusions
References

참고문헌 (31)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-539-000545746