메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
곽민준 (부산대학교) 박지우 (부산대학교) 박근태 (부산대학교) 강범수 (부산대학교)
저널정보
한국소성·가공학회 소성·가공 소성가공 제29권 제2호(통권 제186호)
발행연도
2020.4
수록면
76 - 88 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The need for advanced high strength steel (AHSS) forming technology is increasing as interest in light weight and safe automobiles increases. Multipoint dieless forming (MDF) is a novel sheet metal forming technology that can create any desired longitudinal and transverse curvature in sheet metal. However, since the springback phenomenon becomes larger with high strength metal such as AHSS, predicting the required MDF to produce the exact desired curvature in two directions is more difficult. In this study, a prediction model using artificial neural network (ANN) was developed to predict the springback that occurs during AHSS forming through MDF. In order to verify the validity of model, a fit test was performed and the results were compared with the conventional regression model. The data required for training was obtained through simulation, then further random sample data was created to verify the prediction performance. The predicted results were compared with the simulation results. As a result of this comparison, it was found that the prediction of our ANN based model was more accurate than regression analysis. If a sufficient amount of data is used in training, the ANN model can play a major role in reducing the forming cost of high-strength steels.

목차

Abstract
1. 서론
2. MDF 모델링 및 해석
3. 인공신경망을 이용한 예측 모델 구성
4. 인공 신경망 모델 검증
5. 결론
REFERENCES

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-551-000539082