메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Vardhini P. (Indian Institute of Technology Madras) Punitha N. (Indian Institute of Technology Madras) Ramakrishnan S. (Indian Institute of Technology Madras)
저널정보
대한전자공학회 IEIE Transactions on Smart Processing & Computing IEIE Transactions on Smart Processing & Computing Vol.9 No.2
발행연도
2020.4
수록면
127 - 134 (8page)
DOI
10.5573/IEIESPC.2020.9.2.127

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this study, an attempt has been made to analyze uterine Electromyography (uEMG) signals during Term conditions (pregnancy duration more than 37 weeks of gestational age) using Empirical Mode Decomposition based Detrended Fluctuation Analysis (EMD-DFA). The Term delivery signals are considered from a publicly available database, grouped as T1 (<26 weeks gestational age) and T2 (≥26 weeks gestational age) based on the time of recording, and are subjected to an EMD-DFA algorithm. The double logarithmic plot of the detrended fluctuation function against the scale is analyzed, and the Hurst exponent feature is computed for both groups. The features are statistically analyzed using the Student’s t-test. Results show that the EMD-DFA method is able to capture the variations in the fluctuations of uEMG signals under these conditions. The Hurst exponent feature is found to be statistically significant (p-value < 0.005) for both groups. There is an increase in the Hurst exponent feature value in the T2 group, which indicates that T2 signals possess smoother characteristics than T1 signals. Hence, it appears that the proposed approach could aid in investigating variations in the fluctuations of Term delivery signals, differentiating T1 and T2 conditions.

목차

Abstract
1. Introduction
2. Methodology
3. Results and Discussion
4. Conclusion
References

참고문헌 (26)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-569-000541548