메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
정우순 (대구대학교) 이형규 (대구대학교)
저널정보
한국산업정보학회 한국산업정보학회논문지 한국산업정보학회논문지 제25권 제2호
발행연도
2020.4
수록면
129 - 136 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
손가락 움직임 인식을 통한 제어는 직관적인 인간-컴퓨터 상호작용 방법의 하나이다. 본 연구에서는 여러 가지 ML (Machine learning) 기법을 사용하여 효율적인 손가락 움직임 인식을 위한 웨어러블 디바이스를 구현한다. 움직임 인식을 위한 시계열 데이터 분석에 전통적으로 사용되어 온 HMM (Hidden markov model) 및 DTW (Dynamic time warping) 기법뿐만 아니라 NN (Neuralnetwork) 기법을 적용하여 손가락 움직임 인식의 효율성 및 정확성을 비교하고 분석한다. 제안된 시스템의 경우, 경량화된 ML 모델을 설계하기 위해 각 ML 기법에 대해 최적화된 전처리 프로세스를 적용한다. 실험 결과, 최적화된 NN, HMM 및 DTW 기반 손가락 움직임 인식시스템은 각각 99.1%, 96.6%, 95.9%의 정확도를 제공한다.

목차

요약
Abstract
1. 서론
2. 손가락 움직임 인식 시스템 구성
3. 시계열 데이터 분류를 위한 전통적 ML 기법
4. 신경망 회로 기반 데이터 분류 기법
5. 실험 결과
6. 결론
References

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-530-000583714