메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김영주 (한국전자통신연구원) 김태호 (한국전자통신연구원)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제24권 제5호
발행연도
2020.5
수록면
591 - 599 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
딥러닝 기술은 실세계의 객체를 분류하거나 인식하기 위해서 사용된다. 이를 위해서 준비된 많은 데이터를 고성능 컴퓨터에서 학습한 후에, 그 학습모델을 인식기에 탑재하여 각종 객체들을 인식한다. 이러한 인식기는 다양한 환경에서 사용되면서 인식하지 못하는 객체들이나 인식률이 낮은 객체들이 발생할 수 있다. 이런 문제를 해결하기 위해서 실세계 객체들을 주기적으로 학습하여 인식률을 높인다. 하지만, 즉각적인 인식률 향상이 어려울 뿐만 아니라, 임베디드 디바이스 등에 탑재되어 있는 인식기에서 학습하는 것이 쉽지 않다. 따라서, 본 논문에서는 임베디드 디바이스에 적용가능한 부분 학습 기반의 실시간 손글씨 인식기를 제안한다. 제안된 인식기는 사용자 요청 시마다 임베디드 디바이스에서 부분 학습을 할 수 있는 환경을 제공하고, 실시간으로 인식기의 학습모델이 갱신된다. 이로 인해서 인식기의 지능이 지속적으로 향상됨으로 최초에 인식하지 못했던 손글씨에 대해 인식이 가능해진다. 이렇게 제안된 인식기는 RK3399 임베디드 디바이스에서 22개의 숫자와 글자에 대해서 학습과 추론이 가능하다는 것을 실험을 통하여 사람 손으로 쓴 은행 계좌명과 계좌번호를 인식할 수 있는 개인화된 지능을 가진 스마트 기기에 활용 가능할 것으로 기대된다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 연구배경
Ⅲ. 부분 학습 기반의 실시간 손글씨 인식기
Ⅳ. 구현 및 실험
Ⅴ. 결론
References

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-004-000682466