메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
정찬미 (이화여자대학교) 민대기 (이화여자대학교)
저널정보
한국전자거래학회 한국전자거래학회지 한국전자거래학회지 제25권 제2호
발행연도
2020.5
수록면
49 - 63 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
영화 제작에 막대한 비용이 투입되지만 관객수요는 매우 불확실하기 때문에 개선된 수요예측은 수익 개선을 위한 의사결정의 중요 수단으로 활용될 수 있다. 본 연구에서는 영화의 개봉 후 수요를 예측함에 있어 기계학습 기법의 적용 타당성을 예측 성능의 관점에서 검증하였다. 분석결과를 종합하면 다음과 같다. 첫째, 대안변수에 대한 통계적 검증 결과 기본 영화 특성(감독, 배우)과 함께 개봉 후 2주차까지의 스크린수, 상영횟수, 관객수, 주요 배우에 대한 관심도 등 시계열 자료가 수요예측에 유의미한 것을 확인하였다. 둘째, Random Forest Classifier와 SVM(Support Vector Machine) 등 분류 기반 기계학습 기법과 Random Forest Regressor와 k-NN Regressor와 같은 회귀모형 기반 기계학습 기법에 적용하여 예측 성능을 평가한 결과, Random Forest 기법이 우수한 결과를 보였다. 셋째, 누적관객수가 1분위보다 작은 영화에서 회귀모형 기반 기법은 낮은 예측 정확도를 보였으며, 분류기반 기법은 반대로 가장 우수한 결과를 얻었다. 즉, 영화 수요의 분포 특성에 따라서 차별화된 기계학습 기법을 적용하는 것이 필요하다.

목차

초록
ABSTRACT
1. 서론
2. 연구 방법
3. 분석결과
4. 결론
References

참고문헌 (36)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-004-000660037