메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
노재승 (숭실대학교) 바트셀렘 (숭실대학교) 이완곤 (숭실대학교) 박영택 (숭실대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.47 No.6
발행연도
2020.6
수록면
559 - 567 (9page)
DOI
10.5626/JOK.2020.47.6.559

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
실세계의 지식을 구조화된 방식으로 표현한 지식 그래프는 웹 검색, 추천 시스템과 같이 다양한 분야에서 활용되고 있지만, 엔티티 또는 엔티티 사이의 링크가 누락되는 문제가 존재한다. 이러한 문제해결을 위해 임베딩 기법을 사용하거나 딥러닝을 활용한 다양한 연구들이 진행되었으며, 특히 CNN과 Bidirectional-LSTM을 결합한 최신 연구가 기존 연구들과 비교하여 높은 성능을 나타냈다. 그러나 하나의 엔티티에 대하여 여러 개의 클래스 타입이 정의된 경우 학습 데이터의 양이 기하급수적으로 증대되어 학습시간이 증가하는 문제와 엔티티의 클래스 타입 정보가 정의되지 않으면 학습 데이터 생성이 불가능하다는 한계점이 존재한다. 따라서 본 논문에서는 엔티티의 클래스 타입 수에 상관없이 학습 데이터 생성과 모델에서 학습 및 추론이 가능하도록 미리 학습된 지식 그래프 임베딩 벡터를 사용하는 방법과 vector addition 개념을 활용한 다중 클래스 멤버쉽 처리 방법을 제안한다. 본 논문에서 제안하는 방법의 성능을 평가하기 위해 데이터셋 NELL-995 와 FB15K-237을 대상으로 기존 지식 완성 연구들과 비교 실험을 진행하였으며 MAP이 1.6%p, MRR이 1.5%p 더 높은 성능을 보였다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 연구 내용
4. 실험
5. 결론
References

참고문헌 (21)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0