메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김용준 (서강대학교) 박석 (서강대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.47 No.6
발행연도
2020.6
수록면
603 - 611 (9page)
DOI
10.5626/JOK.2020.47.6.603

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
무선 인터넷의 발전과 스마트폰의 대중화에 따라 많은 사람들이 온라인을 통해 사람들과의 관계를 맺는 소셜 네트워크 서비스를 사용하고 있다. 소셜 네트워크 서비스에서 발생하는 개인 데이터는 높은 가치를 지니고 있지만 동시에 민감한 개인정보를 담고 있어 프라이버시 침해가 발생할 가능성이 있다. 개인정보침해를 방지함과 동시에 소셜 네트워크 상의 데이터를 분석하기 위하여 기존 연구는 원본 네트워크 데이터와 유사한 가상 데이터를 생성하거나, 사용자 정보를 익명화하여 배포하는 기법을 제시하였다. 그러나 기존 기법들은 소셜 네트워크 상의 사용자들이 맺는 관계에 의해 형성되는 그래프의 특성을 고려하지 않아 프라이버시와 데이터 유용성 모두에서 약점을 지니고 있다. 본 논문에서는 소셜 네트워크의 그래프 상의 특성을 반영함과 동시에 신뢰할 수 있는 써드파티가 아닌 데이터를 제공하는 개인 수준에서 직접 데이터 보호 기법을 적용하여 제공하는, 프라이버시가 보호된 소셜 네트워크 데이터 배포 기법을 제안한다. 우리는 실제 네트워크 데이터를 사용한 실험을 통하여 제안 기법이 기존의 차분 프라이버시를 적용한 기법들보다 성능이 향상됨을 보였다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 제안기법
4. 실험 결과 및 분석
5. 결론 및 추후연구
References

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0