메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
배재현 (울산대학교) 장경식 (울산대학교) 호아이탄 응우옌 (울산대학교) 김병천 (울산대학교)
저널정보
한국전산유체공학회 한국전산유체공학회지 한국전산유체공학회지 제25권 제2호
발행연도
2020.6
수록면
111 - 118 (8page)
DOI
10.6112/kscfe.2020.25.2.111

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In the present work, Bayesian inference based on the point-collocation Non-intrusive Polynomial Chaos was conducted in transitional flow around the flat plate using Menter’s γ-Re<SUB>θ</SUB> transition model. Three model coefficients, C<SUB>a2</SUB>, C<SUB>e1</SUB> and C<SUB>e2</SUB> were considered for random variables based on the sensitivity analysis of the present turbulence model and quantity of interest was set to the drag coefficient, C<SUB>d</SUB>. With the assumption of uniform distribution of three model coefficients within ±10%, the surrogate model was obtained based on the general Polynomial Chaos expansion. The simulation results were used for observation to calculate the likelihood function and MCMC sampling algorithm was adopted for Bayesian inference. The correlation between C<SUB>e1</SUB> and C<SUB>d</SUB> was predicted with highest value than other two model coefficients. Based on the original Bayesian inference result, the effect of number of observation data was studied. Also the 2nd order of gPC for surrogate model was adequate through comparison with results of 3rd order gPC. Finally, two prior distributions of input random variables for Bayesian inference were considered and the differences of posterior distributions of input and output were investigated.

목차

1. 서론
2. 수치기법
3. 계산결과
4. 결론 및 토의
References

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-559-000847361