메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Qian Huang (Waseda University) Jiahua Weng (Kanagawa University) Shunichi Ohmori (Waseda University) Kazuho Yoshimoto (Waseda University)
저널정보
대한산업공학회 Industrial Engineering & Management Systems Industrial Engineering & Management Systems Vol.19 No.2
발행연도
2020.6
수록면
335 - 346 (12page)
DOI
10.7232/iems.2020.19.2.335

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The paper proposes an integrated approach for global production planning of production, transportation, and sales problems wherein transportation routing must be optimized simultaneously. Multi-market, multi-product, multi-plant, and multi-path frameworks comprise the research contexts. The objective of this study is to determine how to maximize total profit with path-selection of marine transportation. Products are transported from plants to markets by marine shippers that are business partners of the manufacturer. Unit production costs from each plant to each market are not constant in this study, changing according to transportation path, and discount policy on each liner. Since the proposed model is a nonlinear problem with a nonconvex objective function and has nonlinear constraints, the model was linearized into a mixed-integer linear problem so that it could be solved with an optimization solver. moreover, computational experiments were conducted. the findings show that, because of transportation routing influences production allocation and sales operations, the proposed integrated approach is proven to be effective at increasing total profit and can be used as a decision support tool to aid global manufacturers to contract with transportation booking companies.

목차

ABSTRACT
1. INTRODUCTION
2. LITERATURE REVIEW
3. MATHEMATICAL FORMULATION
4. SOLUTION APPROACH
5. COMPUTATIONAL STUDY AND RESULTS
6. CONCLUSION
REFERENCES

참고문헌 (30)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-530-000879528