메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김동훈 (고려대학교) 김성겸 (고려대학교) 홍득조 (전북대학교) 성재철 (서울시립대학교) 홍석희 (고려대학교)
저널정보
한국정보보호학회 정보보호학회논문지 정보보호학회논문지 제30권 제3호
발행연도
2020.6
수록면
337 - 347 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
CRYPTO 2019에 발표된 Gohr의 연구결과는 딥러닝 기술이 암호분석에 활용될 수 있음을 보여주었다. 본 논문에서는 특정 구조를 가진 S-box를 딥러닝 기술이 식별할 수 있는지 실험한 결과를 제시한다. 이를 위해, 2가지 실험을 수행하였다. 첫 번째로는, 경량암호 설계에 주로 사용하는 Feistel 및 MISTY, SPN, multiplicative inverse 구조를 가진 S-box의 DDT 및 LAT로 학습 데이터를 구성하고 딥러닝 알고리즘으로 구조를 식별하는 실험을 수행하여 구조는 물론 라운드까지 식별할 수 있었다. 두 번째로는 Feistel 및 MISTY 구조가 특정 라운드까지 의사난수성을 보이는지에 대한 실험을 통해 이론적으로 제시된 라운드 수 보다 많은 라운드 수에서 random한 함수와 구분할 수 있음을 확인하였다. 일반적으로, 군사용 등 고도의 기밀성 유지를 위해 사용되는 암호들은 공격이나 해독을 근본적으로 차단하기 위해 설계정보를 공개하지 않는 것이 원칙이다. 본 논문에서 제시된 방법은 딥러닝 기술이 이처럼 공개되지 않은 설계정보를 분석하는 하나의 도구로 사용 가능하다는 것을 보여준다.

목차

요약
ABSTRACT
I. 서론
II. 배경지식
III. 다양한 구조의 S-box 식별
IV. Feistel 및 MISTY 구조 의사난수성 분석
V. 실험결과
VI. 결론
References

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-004-000852162