최근 우리나라는 크고 작은 화재가 지속해서 발생하고 있다. 화재는 우리나라의 도시 내에서 교통사고와 더불어 가장 많이 발생하는 재해 중 하나이며, 화재 발생 빈도는 토지이용의 형태와 시설물의 유형에 따라 밀접한 상관성을 갖고 있다. 따라서 본 연구에서는 진주시를 대상으로 10년간 화재데이터를 사용하여 토지용도별, 시설물 유형별 그리고 인문사회적 요인을 고려하여 화재 발생의 유의성을 분석하였다. 먼저 진주시 화재 발생의 공간분포 패턴을 파악한 후, 다중회귀분석을 통해 인문·사회 및 물리적 요인 간의 공간적 종속성 및 비정상성을 확인하였다. 이를 토대로 화재 발생 위치와 각 요인의 위치를 고려하여 공간가중치를 활용한 선형회귀모형, 공간시차모형 그리고 공간오차모형을 비교 분석하였으며 적합도가 높은 통계모형을 제시하였다. 그 결과 진주시 화재 발생의 공간분포 패턴을 확인하기 위해 LISA분석을 실시하였으며 중심상업지역, 공업지역, 주거지역 순으로 화재 발생 빈도가 높은 것으로 나타났고, 인구·사회 및 물리적 변수를 통합하여 다중회귀분석을 실시하였다. 이에 따라 최종 도출된 요인들을 중심으로 공간가중치를 적용하여 세 모형을 비교 분석하였으며 유의성 검정을 실시한 결과 공간오차모형이 가장 유의한 것으로 분석되었다. 화재 발생과 가장 높은 상관성이 있는 시설은 제2종 근린생활시설로 나타났으며 다음으로 단독주택, 제1종 근린생활시설, 가구 수, 판매시설의 순으로 분석되었다. 또한, 표준편차 타원체분석을 통하여 용도지역 중 주거지역, 공업지역, 중심상업지역을 중심으로 시설물별 분포특성을 분석한 결과 주거지역 및 공업지역에서는 네 개 시설물의 특성이 비슷하게 나타났으나 중심상업지역에서는 화재위험도가 가장 높은 제2종 근린생활시설이 중심부에 집중분포하였다. 이러한 연구 결과는 도시지역에서 발생하는 화재에 대해 시설물별 특성을 파악하여 화재안전관리를 하는데 유용한 자료로 활용될 것으로 예상된다.
Recently, large and small fires have been happening more often in Korea. Fire is one of the most frequent disasters along with traffic accidents in korean cities, and this frequency is closely related to the land use and the type of facilities. Therefore, in this study, the significance of fires was analyzed by considering land use, facility types, human and social factors and using 10 years of fire data in Jinju city. Based on this, OLS (Ordinary Least Square) regression analysis, SLM (Spatial Lag Model) and SEM (Spatial Error Model) using space weights, were compared and analyzed considering the location of the fire and each factor, then a statistical model with high suitability was presented. As a result, LISA analysis of spatial distribution patterns of fires in Jinju city was conducted, and it was proved that the frequency of fires was high in the order as follow, central commercial area, industrial area and residential area. Multiple regression analysis was performed by integrating demographic, social, and physical variables. Therefore, the three models were compared and analyzed by applying spatial weighting to the derived factors. As a result of the significance test, the spatial error model was analyzed to be the most significant. The facilities that have the highest correlation with fire occurrence were second type neighborhood facilities, followed by detached house, first type neighborhood facilities, number of households, and sales facilities. The results of this study are expected to be used as significant data to identify factors and manage fire safety in urban areas. Also, through the analysis of the standard deviation ellipsoid, the distribution characteristics of each facility in the residential area, industrial area, and central commercial area among the use areas were analyzed. In, the second type neighborhood facility with the highest fire risk was concentrated in the center. The results of these studies are expected to be used as useful data for identifying factors and managing fire safety in urban areas.