메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국식물생명공학회 Plant Biotechnology Reports Plant Biotechnology Reports 제14권 제1호
발행연도
2020.1
수록면
131 - 138 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Transient protein expression is a useful technique for investigating the protein localization and functional analysis of stress responses in rice plants. Currently, available methods for in planta transient expression analysis include Agrobacteriummediated transformation, protoplast transformation using polyethylene glycol or electroporation, and biolistic bombardment expression which have several disadvantages and are not well suited for the rice. Therefore, development of a method for rapid and efficient analysis of protein expression, subcellular localization, pathogen effector screening, and protein–protein interaction in rice is required. We developed a protocol for in planta gene expression analysis in sliced rice sheath cells by modifying and optimizing the biolistic particle bombardment technique. By obtaining thin sections (~400 μm) of rice sheath cells, auto-fluorescence from chlorophyll was eliminated. This system was validated through the localization of marker genes specifically expressed in nuclei, plasma membranes, and tonoplast. In addition, high transformation efficiency of 30% was achieved. Therefore, this protocol provides a new and rapid method for transient gene expression assay in rice. Protein secretion was examined in rice sheath cells using predicted secretory proteins from rice blast fungus, indicating that this method is applicable to plant–microbe interaction studies. The transient expression protocol established here is well optimized for protein localization, secretion, and host–pathogen protein interaction studies in rice. A typical experiment can be completed in three days.

목차

등록된 정보가 없습니다.

참고문헌 (37)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0