메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국농공학회 한국농공학회논문집 한국농공학회논문집 제61권 제6호
발행연도
2019.1
수록면
111 - 121 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Evapotranspiration (ET) of vegetation is one of the major components of the hydrologic cycle, and its accurate estimation is important for hydrologicwater balance, irrigation management, crop yield simulation, and water resources planning and management. For agricultural crops, ET is oftencalculated in terms of a short or tall crop reference, such as well-watered, clipped grass (reference crop evapotranspiration, ETo). The Penman-Monteithequation recommended by FAO (FAO 56-PM) has been accepted by researchers and practitioners, as the sole ETo method. However, its accuracy iscontingent on high quality measurements of four meteorological variables, and its use has been limited by incomplete and/or inaccurate input data. Therefore, this study evaluated the applicability of Backpropagation Neural Network (BPNN) model for estimating ETo from less meteorological datathan required by the FAO 56-PM. A total of six meteorological inputs, minimum temperature, average temperature, maximum temperature, relativehumidity, wind speed and solar radiation, were divided into a series of input groups (a combination of one, two, three, four, five and six variables)and each combination of different meteorological dataset was evaluated for its level of accuracy in estimating ETo. The overall findings of this studyindicated that ETo could be reasonably estimated using less than all six meteorological data using BPNN. In addition, it was shown that the properchoice of neural network architecture could not only minimize the computational error, but also maximize the relationship between dependent andindependent variables. The findings of this study would be of use in instances where data availability and/or accuracy are limited.

목차

등록된 정보가 없습니다.

참고문헌 (35)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0