메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국융합신호처리학회 융합신호처리학회 논문지 융합신호처리학회 논문지 제20권 제4호
발행연도
2019.1
수록면
226 - 231 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
한방 설진에서 WTCI(Winkel Tongue Coating Index) 설태 평가는 환자의 설태량 측정을 위한 중요한 객관적인 지표 중의 하나이다. 그러나 이전의 WTCI 설태 평가는 혀영상으로부터 설태 부분을 추출하여 전체 혀 영역에서 추출된 설태 영역의 비율을 정량적으로 측정하는 방법이 대부분으로 혀영상의 촬영 조건이나 설태 인식 성능에 의해서 비객관적 측정의 문제점이 있었다. 따라서 본 논문에서는 빅데이터를 기반으로 하는 인공지능의 딥러닝 방법을 적용하여 설태량을 분류하여 평가하는 딥러닝 기반의 WTCI 평가 방법을 제안하고 검증한다. 설태 평가 방법에 있어서 딥러닝의 유효성 검증을 위해서는 CNN을 학습 모델로 사용하여 소태, 박태, 후태의 3가지 유형의 설태량을 분류한다. 설태 샘플 영상을 학습 및 검증 데이터로 구축하여 CNN 기반의 딥러닝 모델로 학습한 결과 96.7%의 설태량 분류 정확성을 보였다.

목차

등록된 정보가 없습니다.

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0