메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국국토정보공사 지적과 국토정보 지적과 국토정보 제50권 제1호
발행연도
2020.1
수록면
201 - 214 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 연구는 UAV 영상의 식생지수를 활용한 소나무재선충병 피해목 조기 탐지를 그 목적으로 하며, NDVI를 비롯한 대표적인 식생지수들을 선정하고 각각의 분류 정확도 비교분석을 통해 최적의 식생지수를 분석해보았다. 현장답사를 통하여 193개체의 소나무재선충병 피해목 위치데이터를 구축하고 동시에 다중분광 UAV 영상을 이용하여 4가지 식생지수 분석을 수행하였다. 무감독분류(K-Means)를 통하여 피해목을 분류하였고, 오차행렬(Confusion Matrix)를 이용하여 식생지수별 분류정확도를 비교‧분석하였다. 연구의 결과를 요약하면 다음과 같다. 첫째 분류의 전체정확도는 NDVI (88.04%, Kappa계수 0.76) > GNDVI (86.01%, Kappa계수 0.72) > NDRE (77.35%, Kappa계수 0.55) > SAVI (76.84%, Kappa계수 0.54)순으로 분석되어 NDVI가 가장 높은 정확도를 보였으며, GNDVI가 거의 비슷한 수준의 분류정확도를 보였다. 둘째, NDVI 및 GNDVI 식생지수를 이용한 K-Means 무감독 분류방법으로 피해목의 판별이 어느 정도 가능한 것으로 판단된다. 특히 위 기법은 연산이 집약적이고 사용자의 개입이 적고 분석과정이 상대적으로 간단하여 피해목의 조기 탐지에 도움을 줄 수 있을 것으로 판단된다. 향후 시계열영상의 활용 또는 딥러닝기법의 추가 응용으로 분류정확도를 높일 수 있을 것으로 기대한다.

목차

등록된 정보가 없습니다.

참고문헌 (27)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0