메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국전자통신학회 한국전자통신학회 논문지 한국전자통신학회 논문지 제15권 제1호
발행연도
2020.1
수록면
133 - 138 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 논문은 대부분의 변형된 CNN(: Convolution Neural Networks)에서 사용하지 않는 첫 번째 컨볼루션 층(convolution layer)을 사용해 정확도 향상을 노리는 방법을 소개한다. GoogLeNet, DenseNet과 같은 CNN에서 첫 번째 컨볼루션 층에서는 기존방식(3x3 컨볼루션연산 및 배규정규화, 활성화함수)만을 사용하는데 이 부분을 RGB-csb(: RGB channel separation block)로 대체한다. 이를 통해 RGB값을 특징 맵에 적용시켜 정확성을 향상시킬 수 있는 선행연구 결과에 추가적으로, 기존 CNN과 제한된 영상 개수를 사용하여 정확도를 비교한다. 본 논문에서 제안한 방법은 영상의 개수가 적을수록 학습 정확도 편차가 커 불안정하지만 기존 CNN에 비해 정확도가 평균적으로 높음을 알 수 있다. 영상의 개수가 많아질수록 기존 CNN과 제안한 방법 간의 정확도 차이가 점점 줄어드는 것을 볼 수 있는데 영상이 많아질수록 제안한 방법은 크게 효과를 주지 못하는 것으로 보인다.

목차

등록된 정보가 없습니다.

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0