메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
서울대학교 인지과학연구소 Journal of Cognitive Science Journal of Cognitive Science 제20권 제4호
발행연도
2019.1
수록면
535 - 552 (18page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Bayesian networks are useful analytical models for designing the structure of knowledge in machine learning. Probabilistic dependency relationships among the variables can be represented by Bayesian networks. One strategy of a structure learning Bayesian Networks is the score and search technique. In this paper, we present a new method for structure learning of the Bayesian network which is based on Pigeon Inspired Optimization (PIO) Algorithm. The proposed algorithm is a simple one with fast convergence rate. In nature, the navigational ability of pigeons is unbelievable and highly impressive. In accordance with the PIO search algorithm, a set of directed acyclic graphs is defined. Every graph owns a score which shows its fitness. The algorithm is iterated until it gets the best solution or a satisfactory network structure using map and compass, and landmark operator. In this work, the proposed method compared with Simulated Annealing, Bee optimization and Simulated Annealing as a hybrid algorithm, Bee optimization and Greedy search as a hybrid algorithm, and Greedy Search using BDeu score function. We also investigated the confusion matrix performances of the methods. The paper presents the results of extensive evaluations of these algorithms based on common benchmark data sets. The results indicate that the proposed algorithm has better performance than the other algorithms and produces higher scores and accuracy values.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0