메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

3차원 회전을 이용한 인조 번호판 생성기의 번호판 인식 성능 비교
추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
이유진 (서울과학기술대학교) 김상준 (서울과학기술대학교) 박경무 (서울과학기술대학교) 박구만 (서울과학기술대학교)
저널정보
한국방송·미디어공학회 한국방송미디어공학회 학술발표대회 논문집 한국방송·미디어공학회 2020 하계학술대회
발행연도
2020.7
수록면
141 - 144 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 딥러닝을 이용한 자동차 번호판 인식 알고리즘에 있어서 인조 번호판을 생성하여 데이터 수집과 라벨링 작업 시간을 줄이기 위한 연구가 진행되고 있다. 하지만 인조 번호판의 특성상 정면의 이미지로 구성되어 있기 때문에 자동차의 정면에서 촬영된 번호판의 인식률은 높지만 측면에서 촬영된 번호판의 경우 인식률이 낮아진다. 본 논문에서는 다양한 카메라 설치 위치에 따른 다각도로 촬영된 번호판 영상의 인식률을 보완하기 위해 이미지를 3차원으로 회전하여 데이터를 생성하는 인조 번호판 생성기 프로그램을 개발하였다. 3차원 회전을 하였을 때 번호판 인식 성능을 비교하기 위해 기존 방식으로 생성한 번호판과 제안 방식으로 생성한 번호판 각 600,000장씩 생성하여 총 1,200,000장을 생성하였으며, 데이터의 비율에 따라 10가지의 학습 데이터 셋을 구성하였다. 인조 번호판 데이터의 학습 결과를 평가하기 위해 실제 번호판 이미지 1789장으로 테스트 셋을 구성하였고, 기존의 인조 번호판 생성 방식과 인식 정확도를 비교 분석하였다.

목차

요약
1. 서론
2. 관련 연구
3. 인조 번호판 생성
4. 실험 결과
5. 결론
6. 참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-567-001082555