메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
이재훈 (줌인터넷) 박경수 (줌인터넷) 김병조 (줌인터넷)
저널정보
한국방송·미디어공학회 한국방송미디어공학회 학술발표대회 논문집 한국방송·미디어공학회 2020 하계학술대회
발행연도
2020.7
수록면
160 - 163 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
비디오 영상으로부터 객체를 추적하는 문제에 있어서 폐색은 오늘날까지도 해결해야하는 문제 중 하나다. 폐색이란 영상 속 찾고자 하는 객체가 이전 프레임에서는 존재했지만 특정 프레임에서는 전경 혹은 다른 객체에 의해 가려져 모습이 보이지 않는 것을 의미한다. 폐색이 나타난 상황에서 해당 객체를 추적하기 위해서는 이전 프레임까지 추적된 정보를 바탕으로 영상에 다시 객체가 나타날 때까지 위치를 잘 예측해야 한다.
본 논문은 비디오 영상의 폐색 환경에 강인한 다중 객체 추적 알고리즘을 제시한다. 이를 위해 딥러닝 기반의 LSTM 구조를 활용하여 객체의 형태 정보를 학습하고 칼만 필터를 이용해 객체의 속도 정보를 학습한다. 두 정보를 조합하여 폐색이 발생하였을 때 객체의 형태와 위치를 예측하여 영상 속에 객체가 다시 등장하더라도 추적 성능을 최대화 한다.

목차

요약
1. 서론
2. 제안하는 알고리즘
3. 실험
4. 결론
참고 문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-567-001082499