메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
성준영 (광운대학교) 이우주 (광운대학교) 오승준 (광운대학교)
저널정보
한국방송·미디어공학회 한국방송미디어공학회 학술발표대회 논문집 한국방송·미디어공학회 2020 하계학술대회
발행연도
2020.7
수록면
209 - 213 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
본 논문에서는 원격 탐사 영상 정합에서 정확도는 유지하면서 특징점 매칭 (Matching) 복잡도를 줄이기 위해 입력 영상을 전처리하는 구조물 검출 네트워크를 이용한 원격 탐사 영상 정합 방법을 제안한다. 영상 정합의 기존 방법은 입력 영상에서 특징점을 추출하고 설명자 (Descriptor)를 생성한다. 본 논문에서 제안하는 방법은 입력영상에서 특징점 매칭에 영향을 미치는 구조물만 추출하여 새로운 영상을 만들어 특징점을 추출한다. 추출된 특징점은 필터링 (Filtering)을 거쳐 원본 영상에 매핑 (Mapping)되어 설명자를 생성하여 특징점 매칭 속도를 향상시킨다. 또한 구조물 검출 네트워크에서 학습 영상과 시험 영상의 특성의 차이로 생기는 성능 저하 문제를 개선하기 위해 히스토그램 매핑 기법을 이용한다. 아리랑 3 호가 획득한 원격 탐사 영상에 대한 실험을 통해 제안하는 방법은 정확도를 유지하면서 계산 시간을 SURF 보다 87.5%, SIFT 보다 92.6% 감소시킬 수 있다.

목차

요약
1. 서론
2. 제안 방법
3. 실험 결과
4. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-567-001082333