메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Yunju Kim (The Catholic University of Korea) Changwoo Lee (The Catholic University of Korea)
저널정보
대한전자공학회 IEIE Transactions on Smart Processing & Computing IEIE Transactions on Smart Processing & Computing Vol.9 No.4
발행연도
2020.8
수록면
312 - 316 (5page)
DOI
10.5573/IEIESPC.2020.9.4.312

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The resolution, intensity range and color gamut of the latest display devices such as organic light-emitting diode (OLED) displays have been improved significantly compared to conventional display devices. Regarding the intensity range, the latest display devices can produce a maximum luminous intensity of 1,000 nits or more, which extends the intensity range considerably compared to conventional displays, which have a maximum luminous intensity of approximately 300 nits. In this paper, a deep learning-based image intensity range extension method is studied. The input and target images for deep learning are generated from the high dynamic range (HDR) images, and the target images have an extended intensity range using the Hybrid Log-Gamma (HLG) curve. A modified structure of U-net is proposed to improve the convergence of U-net, and an efficient learning method through the adoption of a structural similarity (SSIM) loss as a loss function is also proposed. The extensive simulations reveal the significantly improved performance of the proposed method.

목차

Abstract
1. Introduction
2. Extension of Image Intensity Using Hybrid Log-Gamma
3. Proposed Deep Learning Method for Extending the Image Intensity
4. Performance Evaluation
5. Conclusion
References

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-569-001078660