메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Thao Thi Nguyen (Chung-Ang University) Seong-Nam Nam (Chung-Ang University)
저널정보
대한환경공학회 Environmental Engineering Research Environmental Engineering Research 제26권 제3호
발행연도
2021.6
수록면
155 - 182 (28page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This study investigates the photocatalysis of dissolved organic matter (DOM) under ZnO-assisted artificial sunlight irradiation. Response surface methodology (RSM) based on central composite design (CCD) was utilized for design of experiments with ZnO dosage and pH. Fluorescence excitation–emission matrices coupled with parallel factor analysis (EEM-PARAFAC), dissolved organic carbon (DOC), and UV/Vis spectroscopy were used to track the DOM degradation during photocatalysis. EEM-PARAFAC analysis decomposed fluorescent DOM into two components (C1 and C2), identified as terrestrial humic-like organic matters. A pseudo-first-order DOM removal decreased with increased ZnO dosage, and were highest at pH 7 and lowest at pH 4. Response surface models of DOC, UV<SUB>254</SUB>, C1 and C2 removals demonstrated statistically significant and well matched with a second-order polynomial equation based on analysis of variance (ANOVA). First-order terms were the highest contributor, in which ZnO dosage had the highest level of significance, to the DOM removal. The optimal conditions for the photocatalysis of DOM were found to be ZnO 0.3 g/L and pH 10, showing that the removals of DOC, UV<SUB>254</SUB>, C1 and C2 were 57.9%, 94.5%, 100%, and 98.0%, respectively. In addition, ZnO showed a good stability and better photodegradation efficiency than TiO₂ in the DOM removal.

목차

ABSTRACT
1. Introduction
2. Experimental Methods
3. Results and Discussion
4. Conclusions
References

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0