메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술대회자료
저자정보
Kim, Hee Joon (Pukyong National University, Dept. of Environmental Exploration Engineering) Lee, Jung-Mo (Kyungpook National Unviersity, Dept. of Geology) Lee, Ki Ha (Lawrence Berkeley National Laboratory)
저널정보
대한자원환경지질학회 대한자원환경지질학회 학술발표회 대한자원환경지질학회 2002년도 춘계 공동학술발표회
발행연도
2002.1
수록면
167 - 169 (3page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The extended Born, or localized nonlinear approximation of integral equation (IE) solution has been applied to inverting single-hole electromagnetic (EM) data using a cylindrically symmetric model. The extended Born approximation is less accurate than a full solution but much superior to the simple Born approximation. When applied to the cylindrically symmetric model with a vertical magnetic dipole source, however, the accuracy of the extended Born approximation is greatly improved because the electric field is scalar and continuous everywhere. One of the most important steps in the inversion is the selection of a proper regularization parameter for stability. Occam's inversion (Constable et al., 1987) is an excellent method for obtaining a stable inverse solution. It is extremely slow when combined with a differential equation method because many forward simulations are needed but suitable for the extended Born solution because the Green's functions, the most time consuming part in IE methods, are repeatedly re-usable throughout the inversion. In addition, the If formulation also readily contains a sensitivity matrix, which can be revised at each iteration at little expense. The inversion algorithm developed in this study is quite stable and fast even if the optimum regularization parameter Is sought at each iteration step. Tn this paper we show inversion results using synthetic data obtained from a finite-element method and field data as well.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0