메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술대회자료
저자정보
이창길 (성균관대학교 건설환경시스템공학과) 김태헌 (성균관대학교 U-city 공학과) 장하주 (성균관대학교 U-city 공학과) 박승희 (성균관대학교 사회환경시스템공학과)
저널정보
한국방재학회 한국방재학회 학술대회 한국방재학회 2011년도 정기 학술발표대회
발행연도
2011.1
수록면
94 - 94 (1page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
배관 구조물에서는 내부 미세 균열에서부터 국부 좌굴, 볼트 풀림, 피로 균열 등과 같이 다양한 형태의 손상이 복합적으로 발생 가능하다. 이러한 복합 손상은 배관 구조물의 누수, 누유 등의 사고를 야기할 수 있다. 하지만 기존의 단일 스케일 계측 시스템으로부터 복합 손상에 의한 실시간 누수를 진단하기는 매우 어렵다. 본 연구 단계에서는 누수를 야기하는 복합 손상을 효율적으로 진단하기 위하여 선행 연구에서 제안된 압전센서를 이용한 자가 계측 회로 기반의 다중 스케일 계측 시스템을 구조물의 복합 손상 진단에 적용하였다. 자가 계측 회로 기반 다중 스케일 계측 시스템은 크게 두 가지 형태의 신호를 계측한다. 첫 번째 스케일은 임피던스 계측으로부터 특정 주파수 대역폭에 대한 구조 응답을 계측하며, 두 번째 스케일은 유도 초음파 계측으로부터 단일 중심 주파수에 해당하는 구조물의 응답을 계측한다. 복합 손상을 손상 유형별로 분류하기 위하여 E/M 임피던스(Electro-mechanical impedance)및 유도 초음파(Guided wave) 계측으로부터 추출한 특성을 이용하여 2차원 손상지수를 계산하고 이를 지도학습 기반 패턴인식 기법(Supervised learning based pattern recognition) 중 확률론적 신경망 기법(Probabilistic Neural Network, PNN)에 적용한다. 제안된 기법의 적용성 검토를 위하여 파이프 구조물에 인위적으로 다중 손상을 생성시켜 시험을 수행하였다. 본 연구에서 제안된 기법이 실제 배관 구조물에 성공적으로 적용된다면 손상 부재의 거동 및 구조물 성능의 손상에 대한 영향을 효율적으로 진단하고 평가함으로써 배관 구조물의 효과적인 유지관리가 가능할 것으로 예상된다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0